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ANALYSIS OF THE DERIVATIVE

OF THE ENERGY FUNCTIONAL WITH RESPECT

TO THE LENGTH OF A CURVILINEAR CRACK IN AN

ELASTIC BODY WITH A POSSIBLE CRACK-EDGE CONTACT

UDC 539.375E. V. Vtorushin

A homogeneous two-dimensional body with a crack of variable length is considered. At the crack
edges, conditions are formulated in the form of inequalities that describe mutual nonpenetration of
the edges. The derivative of the elastic-energy functional with respect to the length of the curvilinear
crack is analyzed. It is shown that the derivative is independent of the crack path, provided that the
curve along which the crack propagates is reasonably smooth.

Key words: derivative of the energy functional, nonpenetration, variational inequality, Griffith
criterion.

Introduction. The present paper addresses some mathematical problems of the crack theory [1], in par-
ticular, crack propagation in elastic bodies. In this theory, the Griffith criterion plays an important role, according
to which the crack starts growing if the derivative of the elastic-energy functional with respect to the crack length
reaches the critical value 2γ0. This quantity is a material characteristic of the medium. The derivative of the energy
functional is evaluated along the crack propagation path. The dependence of the derivative on the path is studied,
which is important for understanding the Griffith criterion.

The equilibrium problem of a solid body is studied, based on the two-dimensional theory of elasticity [1].
The body contains a crack. At the crack edges, the nonpenetration conditions are formulated in the form of a
system of equalities and inequalities. The external boundary is subjected to the Dirichlet homogeneous conditions.

At present, there exists a large body of literature where parameter-dependent solutions of elliptic equations
are studied for various perturbations of the domains. The case of smooth domains was considered in [2]. Results
concerning the differentiation of energy functionals for linear boundary-value problems in nonsmooth domains were
given in [3, 4].

For nonlinear elliptic problems with boundary conditions formulated in the form of inequalities, the deriva-
tive of the energy functional was first obtained in [5]. The method for obtaining the derivative described in [5]
allows one to avoid calculating boundary conditions for the material derivative of the solution, which is generally
determined nonuniquely. Later, similar formulas were derived for derivatives in various problems of the elasticity
theory [6–9] with the use of variational formulations [10]. It was assumed thereby that the cracks were rectilinear;
otherwise, additional conditions were imposed on the domain perturbation, which transformed the set of admissible
displacements of points of the body in the unperturbed problem into that in the perturbed problem.

With the help of the formulas obtained, invariant integrals of the Cherepanov–Rice [1] type were derived.
This integral determines the energy-release rate for quasi-static crack growth and is used in fracture mechanics to
model the crack growth.
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Brokate and Khludnev [11] showed that the derivative of the energy functional along the curvilinear crack
path in a two-dimensional elastic isotropic body does not depend on the path shape if the curve describing this
path is reasonably smooth. In this case, linear boundary conditions were specified at the crack.

Rudoy [12] obtained a formula for the derivative of the energy functional along a curvilinear path in a two-
dimensional problem of the theory of elasticity. At the crack edges, nonlinear boundary conditions were formulated
in the form of equalities and inequalities. The main difficulty was to construct one-to-one mapping between the
sets of admissible displacements in the perturbed and unperturbed problems.

The last findings concerning the study of curvilinear cracks propagating in elastic bodies under nonpenetra-
tion constraints are given [13].

Perturbation of the Equilibrium Problem of an Elastic Body with a Crack under Conditions
of a Possible Edge Contact. Let Ω ⊂ R

2 be a bounded domain with a smooth boundary Γ. We denote the set
[−1, 0]× {0} by Σ and consider the plot Γδ of the function x2 = ψ(x1) for x1 ∈ (0, δ) and ψ(0) = ψ′(0) = 0, where
(x1, x2) ∈ Ω, δ ≥ 0. We set Γδ = Σ ∪ Γδ assuming that Γ̄δ ⊂ Ω for a small varied parameter δ. In a particular
case with δ = 0, we obtain Γ0 = Σ. The function ψ is assumed to be reasonably smooth. The question of which
specific class this function belongs to is discussed below. We consider the domain Ωδ with a cut (crack) Γ̄δ, i.e.,
Ωδ = Ω \ Γ̄δ.

Defining the unit normal vector ν on Γδ as

ν =

⎧
⎨

⎩

(0, 1) on Σ,
(
− ψx1/

√
1 + ψ2

x1
, 1/

√
1 + ψ2

x1

)
on Γδ,

one can identify the positive and negative edges Γ±
δ of the crack with respect to the vector ν.

In the domain Ω0, we consider an equilibrium problem of an elastic body with a crack Γ0 under nonpenetra-
tion conditions. If the right side f = (f1, f2) ∈ [C1(Ω̄0)]2 is known, the displacement vector u = (u1, u2) satisfies
the equilibrium equations subject to boundary conditions in the form of equalities and inequalities:

−σij,j = fi, i, j = 1, 2 in Ω0; (1)

σij = cijklεkl(u), i, j, k, l = 1, 2 in Ω0; (2)

u = 0 on Γ; (3)

[u] · ν ≥ 0, σν ≤ 0, [σν ] = 0, στ = 0, σν [u] · ν = 0 on Γ±
0 . (4)

Here εkl(u) = (uk,l + ul,k)/2 are the strain-tensor components, uk,l = ∂uk/∂xl, x = (x1, x2) ∈ Ω0, σij = σij(u) are
the stress-tensor components, and cijkl are the components of the positively defined tensor of elastic coefficients
(cijkl = cjikl = cklij , cijklξklξij ≥ c0ξijξij , c0 > 0, and ξij = ξji). To simplify calculations, we assume that cijkl are
constants. Finally, we use the decomposition

{σij} = σνν + στ , σν = σijνjνi, i, j = 1, 2

and the following notation: [v] = v+ − v− is the discontinuity of the function v on Γ0 and v± are the values of the
function v on Γ±

0 .
For the small parameter δ, we consider perturbation of problem (1)–(4). Let the unknown displacement

vector u satisfy the following system of equations with boundary conditions:

−σδij,j = fi, i, j = 1, 2 in Ωδ,

σδij = cijklεkl(uδ), i, j, k, l = 1, 2 in Ωδ,

uδ = 0 on Γ,
(5)

[uδ] · ν ≥ 0, σδν ≤ 0, [σδν ] = 0, σδτ = 0, σδν [u
δ] · ν = 0 on Γ±

δ .

Problem (5) admits variational formulation, and its solution corresponds to the minimum of the elastic-energy
functional
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Πψ(v; δ) =
1
2

∫

Ωδ

σij(v)εij(v) −
∫

Ωδ

f · v

on the convex set

Kδ = {v ∈ H1
0 (Ωδ): [v] · ν ≥ 0 almost everywhere on Γδ},

where

H1
0 (Ωδ) = {v = (v1, v2): vi ∈ H1(Ωδ), i = 1, 2; v = 0 on Γ}.

The minimization problem can be formulated as follows: find an element uδ ∈ Kδ such that

Πψ(uδ; δ) = min
v∈Kδ

Πψ(v; δ).

The element uδ is the solution of the variational inequality. It is required to find an element uδ ∈ Kδ such that
∫

Ωδ

σij(uδ)εij(v − uδ) ≥
∫

Ωδ

f(v − uδ), v ∈ Kδ. (6)

For δ = 0, the solution u0 of the variational problem (6) coincides with the solution u of the unperturbed problem
(1)–(4). It should be noted that problem (6) has a unique solution uδ for all values of δ.

We determine the derivative of the energy functional Πψ(uδ; δ) with respect to the perturbation parameter δ.
For this purpose, following [7, 8], we construct a mapping of the perturbed domain Ωδ onto the original domain Ω0.
We consider the function θ ∈ C∞

0 (Ω) with a carrier in a reasonably small neighborhood of (0, 0), such that θ ≡ 1 in
a still smaller neighborhood of (0, 0) of radius rδ. For small δ < rδ, we introduce a transformation of independent
variables y = y(x, δ), where y ∈ Ω0 and x ∈ Ωδ:

y1 = x1 − δθ(x1, x2), y2 = x2 + ψ(x1 − δθ(x1, x2)) − ψ(x1). (7)

The Jacobian of transformation (7) is given by

Jδ =
∣
∣
∣
∂y(x, δ)
∂x

∣
∣
∣ = 1 − δ

∂θ

∂τ
,

∂

∂τ
≡ ∂

∂x1
+ ψ′(x1)

∂

∂x2
.

It is obvious that Jδ > 0 for small δ. Thus, transformation (7) maps the perturbed domain Ωδ onto the unperturbed
domain Ω0 in a one-to-one manner. In particular, the point (δ, ψ(δ)) is mapped onto the point (0, 0). It should
be noted that the argument of the function ψ(x1) can be negative. In this case, to keep all formulas valid, we set
ψ(x1) = 0 for all x1 < 0. Then, the domain Ωδ (δ < 0) is well defined. The function ψ is assumed to be reasonably
smooth within the interval (−1, δ).

Rudoy [12] found that the derivative Π′
ψ(0) = (d/dδ)Πψ(uδ; δ)

∣
∣
∣
δ=0

of the energy functional with respect to
the length δ of the crack projection Γδ onto the x1 axis is given by

Π′
ψ(0) =

1
2

∫

Ω0

∂θ

∂τ
σij(u)εij(u) −

∫

Ω0

σij(u)Eij(θ;u)

−
∫

Ω0

∂

∂τ
(θfi)ui +

∫

Ω0

σij(u)εij(Q) −
∫

Ω0

f ·Q, (8)

where

Eij(θ;u) =
1
2

(
θ,j

∂ui
∂x1

+ θ,i
∂uj
∂x1

)
+ (θψ′),j

∂ui
∂x2

+ (θψ′),i
∂uj
∂x2

, Q = (0, ψ′′u1).

Formula (8) is used in applications. In particular, the following approximation of the energy functional was obtained:

Πψ(uδ; δ) = Πψ(u; 0) + δΠ′
ψ(0) + o(δ).

Rudoy demonstrated [12] that the derivative of the energy functional (8) is independent of the function θ.
Independence of the Derivative Π′

ψ(0) of the Function ψ. Below, we show that the derivative Π′
ψ(0)

is independent of the function ψ if this function is reasonably smooth.
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We introduce a space of functions belonging to H4(0, 1) such that

H4,0(0, 1) = {ξ ∈ H4(0, 1): ξ(0) = ξ′(0) = ξ′′(0) = ξ′′′(0) = 0}.
We further assume that ψ ∈ H4,0(0, 1). Since ψ = 0 for x1 < 0, the inclusion ψ ∈ H4(−1, 1) holds.

Let B be a sphere of small radius such that the carrier of the function θ lies inside B (BΣ = B \ Σ). The
derivative (8) can be written as

Π′
ψ(0) =

∫

BΣ

d+
∫

BΣ

qψ′ +
∫

BΣ

rψ′′ +
∫

BΣ

sψ′′′, (9)

where d = d(Dαu, Dαθ,Dαf), q = q(Dαu, Dαθ,Dαf), r = r(Dαu, θ,f), and s = s(Dαu) are known functions;
|α| ≤ 1; α = (α1, α2). We note that the smoothness properties of the functions u ∈ H1

0 (Ω0) and ψ ∈ H4,0(0, 1)
imply that all integrals in (9) are bounded. Indeed, the terms on the right side of equality (9) have the form u,iu,jψ

′,
u,iu,jψ

′′, and u,iu,jψ
′′′. According to the nested theorem for the Sobolev space, we have ψ′, ψ′′, ψ′′′ ∈ L∞(−1, 1).

Moreover, u,iu,j ∈ L1(BΣ) and, hence, the statement is valid.
We introduce the notation B+

Σ = {(x1, x2) ∈ BΣ: x1 > 0}. Then, the formula for derivative (9) can be
written as

Π′
ψ(0) =

∫

BΣ

d+
∫

B+
Σ

qψ′ +
∫

B+
Σ

rψ′′ +
∫

B+
Σ

sψ′′′. (10)

Here the equality ψ(x1) = 0 valid for all −1 < x1 < 0 was taken into account.
Formula (10) explicitly expresses the dependence Π′

ψ(0) on the function ψ. Below, we prove the independence
of the derivative Π′

ψ(0) of ψ if ψ ∈ H4,0(0, 1). In essence, it is shown that the sum of the integrals over B+
Σ in (10)

vanishes. This implies, in particular, that the Griffith criterion is indifferent to any crack growth along the trajectory
determined by the function ψ ∈ H4,0(0, 1).

We introduce the notation

N(ψ) =
∫

B+
Σ

qψ′ +
∫

B+
Σ

rψ′′ +
∫

B+
Σ

sψ′′′

and prove the following theorem.
Theorem 1. The following identity is valid:

N(ψ) = 0, ψ ∈ H4,0(0, 1).

Proof. We consider a function ϕ of the form

ϕ(x1) = kxn1 , x1 ∈ (0, 1), k ∈ R, n = 3, 4, . . . . (11)

In this case, we have

ϕ ∈ H4,0(0, 1), n = 3, 4, . . . .

We introduce additional notation. Let

a =
∫

BΣ

d, bn = n

∫

B+
Σ

(
qxn−1

1 + (n− 1)rxn−2
1 + (n2 − 3n+ 2)rxn−3

1

)
, n = 3, 4, . . . .

Substituting the functions ϕ of the form (11) into formula (10), we evaluate the derivative Π′
ψ(0). As a result, we

obtain the relations
Π′
ϕ(0) = a+ kbn, n = 3, 4, . . . . (12)

The derivative of the energy functional has a constant sign. Indeed, for any positive δ, the following relation holds:

Πψ(uδ; δ) − Πψ(u0; 0)
δ

≤ Πψ(u0; δ) − Πψ(u0; 0)
δ

= 0.

In other words, the inequality Π′
ψ(0) ≤ 0 is satisfied for all ψ ∈ H4,0(0, 1); in particular, the following inequality

should hold:

Π′
ϕ(0) ≤ 0. (13)
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As the value of k is chosen arbitrarily, it follows from Eqs. (12) and (13) that

bn = 0, n = 3, 4, . . . .

Then, N(ϕ) = 0 for all functions ϕ of the form (11). Consequently, for all polynomials of the form

ϕ(x1) = β3x
3
1 + β4x

4
1 + . . .+ βnx

n
1 (n = 3, 4, . . .) (14)

we obtain

N(ϕ) = 0. (15)

We show that polynomials of the form of (14) are dense in the spaceH4,0(0, 1). Let ψ ∈ H4,0(0, 1) be a certain
fixed function. It is known that the functions belonging to the space C4[0, 1] and vanishing in the neighborhood of
x1 = 0 are dense in the space H4,0(0, 1). At the same time, for any function χ ∈ C4[0, 1], there exists a sequence
of the Bernstein polynomials converging to χ ∈ C4[0, 1] in the space C4[0, 1]. The Bernstein polynomials are
determined by the formula [14]

χ(x1) =
n∑

k=0

χ
(k

n

)
Cknx

k
1(1 − x1)n−k, (16)

where Ckn = n!/((n− k)!k!). We take an arbitrary value of λ > 0. There exists a function χ ∈ C4[0, 1] equal to zero
in the neighborhood of x1 = 0 such that

‖χ− ψ‖H4,0(0,1) < λ. (17)

For the function χ, we construct a sequence of the Bernstein polynomials χn of the form (16). For sufficiently
large n, we obtain

‖χ− χn‖C4[0,1] < λ. (18)

Note that χ(1/n) = 0 and χ(2/n) = 0 for large n. By virtue of (16), this means that the Bernstein polynomials χn
become

χn(x1) = β3x
3
1 + β4x

4
1 + . . .+ βnx

n
1 .

According to Eqs. (17) and (18), we have

‖χn − ψ‖H4,0(0,1) < 2λ.

Thus, the density of polynomials of the form (14) in the space H4,0(0, 1) has been proven.
Since equality (15) is valid for all polynomials of the form of (14), it is also valid for all ψ ∈ H4,0(0, 1). Thus,

Theorem 1 has been proven.
It follows from Theorem 1 that the derivative of the energy functional can be written as

Π′
ψ(0) = a, ψ ∈ H4,0(0, 1).

The right side of the equality a does not depend on the function ψ. Calculating the value of a, we obtain

Π′
ψ(0) =

∫

Ω0

1
2
σij(u)εij(u)θ,1 − σij(u)ui,1θ,j −

∫

Ω0

ui(fiθ),1. (19)

Independence of the Derivative Π′
ψ(0) of the Function θ. In formula (19), integration can be performed

only with respect to the carrier θ. The solution u of problem (1)–(4) is known to belong to the Sobolev space H2

except for the neighborhood of the crack tip. We recall that θ = 1 in the neighborhood of the point (0, 0). Let B0 be
a certain sphere centered at the point (0, 0), such that B0 ⊂ {x ∈ Ω: θ(x) = 1}. We introduce the set B0

Σ = B0 \Σ
and integrate (19) by parts. Then, for εij = εij(u) and σij = σij(u), we obtain

Π′
ψ(0) =−

∫

Ω0\B0
Σ

((1
2
σijεij

)
,1 −(σijui,1),j −ui,1fi

)
θ +

∫

Σ\B0

[σijνjui,1]θ +
∫

∂B0

(
σiju1,inj − 1

2
σijεijn1

)
+

∫

B0
Σ

ui,1fi. (20)

Here n = (n1, n2) is the outward normal vector to the boundary ∂B0 of the sphere B0. Since the quantities εij(u),
σij(u), and fi are related by the equilibrium equations (1) and Hooke’s law (2), the integral over Ω0 \B0

Σ vanishes.

741



The integral over Σ \B0 can be written as
∫

Σ\B0

[σijνjui,1]θ =
∫

Σ\B0

[σ12u1,1]θ +
∫

Σ\B0

[σ22u2,1]θ. (21)

Rudoy [12] analyzed the right side of (21) using the results of [15] and found that satisfaction of conditions
(4) ensures satisfaction of the equality

[σ22u2,1] = 0 (22)

almost everywhere. It follows from Eqs. (4) and (22) that the integral over Σ \B0 in (20) vanishes. As a result, we
write the formula for the energy derivative that does not contain the function θ:

Π′
ψ(0) =

∫

∂B0

(
σiju1,inj − 1

2
σijεijn1

)
+

∫

B0
Σ

ui,1fi. (23)

The right side of Eq. (23) depends neither on ψ nor on the choice of the sphere B0. This implies that the right side
of Eq. (23) remains unchanged as the sphere radius decreases. If the components of the mass-force vector fi vanish
inside the sphere B0, the right side of Eq. (23) is the Cherepanov–Rice integral, which is often used in applications.

Remark 1. The results obtained can be generalized to the following case within the two-dimensional theory
of elasticity. Let the crack be such that it coincides with a straight line in a certain neighborhood of the tip. It
follows that the derivative of the energy functional along a possible trajectory of crack propagation is independent of
the trajectory shape if the direction of possible propagation of the crack coincides with the direction of the tangent
at the crack tip.

This work was supported by the Russian Foundation for Basic Research (Grant No. 06-01-00209).
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